
Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/12 © Ren-Song Tsay, NTHU, Taiwan 25

3.6

Evaluation of
Expressions

𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶 =?

Regular Expression

 Operators

◦ +,-,*,/,…,etc

 Operands

◦ A,B,C,D,E,F

26

3.6.1

𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

Expression Evaluation

 For 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 If A = 4, B=C=2, D=E=3

 For 𝑋 = ((𝐴/𝐵) − 𝐶) + (𝐷 ∗ 𝐸) − (𝐴 ∗
𝐶)

 X = ((4/2)-2)+(3*3)-(4*2)=1

 For 𝑋 = (𝐴/(𝐵 − 𝐶 + 𝐷)) ∗ (𝐸 − 𝐴) ∗ 𝐶

 X = (4/(2-2+3))*(3-4)*2 = -2.6666666
27

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 2

Evaluation Rules

 Operators have priority

 Operator with higher priority is

evaluated first

 Operators of equal priority are

evaluated from left to right

 Unary operators are evaluated from

right to left

28

Priority of Operators in CPP

Priority Operators

1 Minus, !

2 *, /, %

3 +, -

4 <, <=, >=, >

5 ==, !=

6 &&

7 ||

29

Infix and Postfix Notation

 Infix notation (中序式)

◦ Operator comes in–between the operands

◦ Ex. A+B*C

◦ Hard to evaluate using code…

 Postfix notation (後序式)

◦ Each operator appears after its operands

◦ Ex. ABC*+

30

3.6.2

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 3

Advantages of Postfix Notation

 You don’t need parentheses

 Priority of operators is no longer relevant!

 Expression can be efficiently evaluated by

◦ Making a left to right scan

◦ Stacking operands

◦ Evaluating operators

◦ Push the result into stack

31

Example 1

 Infix: A+B – C => Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

4

Operand

Stack

Operation

See operand A, put it

into stack

A B + C –

32

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

3

4

Operand

Stack

Operation

See operand B, put it

into stack

A B + C –

33

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 4

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

Operand

Stack

Operation

See operator ‘+’ (binary

operator)

1. Pop two elements from stack

2. Perform evaluation (3+4)

3. Push result into stack (7)

A B + C –

74

3

34

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

Operand

Stack

A B + C –

7

Operation

See operand C, put it

into stack

2

35

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

Operand

Stack

Operation

See operator ‘-’

(binary operator)

1. Pop two elements from stack

2. Perform evaluation (7-2)

3. Push result into stack (5)

A B + C –

7

2

5

36

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 5

Example 2

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Operand

Stack

Operation

See operand A, put it

into stack

A

37

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Example 2

Operand

Stack

Operation

See operand B, put it

into stack

A
B

38

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Example 2

Operand

Stack

Operation

See operator ‘/’

1. Pop two elements from stack

2. Perform evaluation (T1=A/B)

3. Push result into stack (T1)
AT1

B

39

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 6

T1

Example 2

Operand

Stack

C

Operation

See operand C, put it

into stack

40

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Example 2

Operand

Stack

Operation

See operator ‘-’

1. Pop two elements from stack

2. Perform evaluation (T2=T1-C)

3. Push result into stack (T2)
T1

C

T2

41

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

T2

Example 2

Operand

Stack

D

Operation

See operand D, put it

into stack

42

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 7

T2

Example 2

Operand

Stack

D

Operation

See operand E, put it

into stack
E

43

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

T2

Example 2

Operand

Stack

D
E

Operation

See operator ‘*’

1. Pop two elements from stack

2. Perform evaluation (T3=D*E)

3. Push result into stack (T3)

T3

44

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

T3

T2

Example 2

Operand

Stack

Operation

See operator ‘+’

1. Pop two elements from stack

2. Perform evaluation

(T4=T2+T3)

3. Push result into stack (T4)

T4

Try the rest of steps yourself!

45

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 8

Evaluation Pseudo Code

void Eval(Expression e)

{ // Assume the last token of e is ‘#’

// A function NextToken is used to get next token in e

Stack<Token> stack; // initialize stack

for (Token x = NextToken(e); x != ‘#’; x = NextToken(e)){

if(x is an operand) stack.Push(x);

else{

// Remove the correct number of operands from stack

// Perform the evaluation

// Push the result back to stack

// ***Try to fill up the code ***

}

}

};

46

Infix to Postfix

 Fully parenthesize algorithm:

◦ Fully parenthesize the expression

◦ Move all operators so the they replace the

corresponding right parentheses

◦ Delete all parentheses

((((A / B) – C) + (D * E)) - (A * C))

A B / C – D E * + A C * -
47

Smarter Infix to Postfix Algorithm

 Utilize stack

 Scan the expression only once

 The order of operands does not change
between infix and postfix

◦ Output every visiting operand directly

Use stack to store visited operators and
pop them out at the proper sequence

◦ When the priority of the operator on top of
stack is higher or equal to that of the
incoming operator (left-to-right associativity)

48

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 9

Example 1

 Infix: A + B * C

Next

token
Stack Output

None Empty None

A Empty A

+ + A

B + AB

* +* AB

C +* ABC

+ ABC*

Empty ABC*+

49

Example 2

 Infix: A * (B + C) * D
Next

token
Stack Output

None Empty None

A Empty A

* * A

(*(A

B *(AB

+ *(+ AB

C *(+ ABC

) * ABC+

* * ABC+*

D * ABC+*D

Empty ABC+*D* 50

Notes: Expression with ()

 ‘(‘ has the highest priority, always push to

stack.

 Once pushed, ‘(’ get the lowest priority.

 ‘)’ has the lowest priority, therefore pop

the operators in the stack until you see

the matched ‘(’, then eliminate both.

51

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 10

Postfix Pseudo Code

void Postfix(Expression e)

{ // Assume the last token of e is ‘#’

// A function NextToken is used to get next token in e

Stack<Token> stack; // initialize stack

for (Token x = NextToken(e); x != ‘#’; x = NextToken(e)){

if(x is an operand) cout << x;

else if (x == ‘)’){ // pop until ‘(’

for(; stack.Top()!=‘(’; stack.Pop()) cout<<stack.Top();

stack.Top(); // pop ‘(‘

}

else{ // x is an operator

for(;icp(stack.Top()) <= icp(x);stack.Pop())

cout<<stack.Top();

stack.Push(x);

}
}

// end of expression; empty the stack

for(;!stack.IsEmpty(); cout << stack.Top(), stack.Pop());

};

52

