
Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 1

2018/9/12 © Ren-Song Tsay, NTHU, Taiwan 25

3.6

Evaluation of
Expressions

𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶 =?

Regular Expression

 Operators

◦ +,-,*,/,…,etc

 Operands

◦ A,B,C,D,E,F

26

3.6.1

𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

Expression Evaluation

 For 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 If A = 4, B=C=2, D=E=3

 For 𝑋 = ((𝐴/𝐵) − 𝐶) + (𝐷 ∗ 𝐸) − (𝐴 ∗
𝐶)

 X = ((4/2)-2)+(3*3)-(4*2)=1

 For 𝑋 = (𝐴/(𝐵 − 𝐶 + 𝐷)) ∗ (𝐸 − 𝐴) ∗ 𝐶

 X = (4/(2-2+3))*(3-4)*2 = -2.6666666
27

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 2

Evaluation Rules

 Operators have priority

 Operator with higher priority is

evaluated first

 Operators of equal priority are

evaluated from left to right

 Unary operators are evaluated from

right to left

28

Priority of Operators in CPP

Priority Operators

1 Minus, !

2 *, /, %

3 +, -

4 <, <=, >=, >

5 ==, !=

6 &&

7 ||

29

Infix and Postfix Notation

 Infix notation (中序式)

◦ Operator comes in–between the operands

◦ Ex. A+B*C

◦ Hard to evaluate using code…

 Postfix notation (後序式)

◦ Each operator appears after its operands

◦ Ex. ABC*+

30

3.6.2

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 3

Advantages of Postfix Notation

 You don’t need parentheses

 Priority of operators is no longer relevant!

 Expression can be efficiently evaluated by

◦ Making a left to right scan

◦ Stacking operands

◦ Evaluating operators

◦ Push the result into stack

31

Example 1

 Infix: A+B – C => Postfix: A B + C –

 Suppose A = 4, B = 3, C = 2

4

Operand

Stack

Operation

See operand A, put it

into stack

A B + C –

32

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

3

4

Operand

Stack

Operation

See operand B, put it

into stack

A B + C –

33

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 4

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

Operand

Stack

Operation

See operator ‘+’ (binary

operator)

1. Pop two elements from stack

2. Perform evaluation (3+4)

3. Push result into stack (7)

A B + C –

74

3

34

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

Operand

Stack

A B + C –

7

Operation

See operand C, put it

into stack

2

35

Example 1

 Infix : A+B – C => Postfix : A B + C –

 Suppose A = 4, B = 3, C = 2

Operand

Stack

Operation

See operator ‘-’

(binary operator)

1. Pop two elements from stack

2. Perform evaluation (7-2)

3. Push result into stack (5)

A B + C –

7

2

5

36

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 5

Example 2

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Operand

Stack

Operation

See operand A, put it

into stack

A

37

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Example 2

Operand

Stack

Operation

See operand B, put it

into stack

A
B

38

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Example 2

Operand

Stack

Operation

See operator ‘/’

1. Pop two elements from stack

2. Perform evaluation (T1=A/B)

3. Push result into stack (T1)
AT1

B

39

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 6

T1

Example 2

Operand

Stack

C

Operation

See operand C, put it

into stack

40

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Example 2

Operand

Stack

Operation

See operator ‘-’

1. Pop two elements from stack

2. Perform evaluation (T2=T1-C)

3. Push result into stack (T2)
T1

C

T2

41

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

T2

Example 2

Operand

Stack

D

Operation

See operand D, put it

into stack

42

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 7

T2

Example 2

Operand

Stack

D

Operation

See operand E, put it

into stack
E

43

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

T2

Example 2

Operand

Stack

D
E

Operation

See operator ‘*’

1. Pop two elements from stack

2. Perform evaluation (T3=D*E)

3. Push result into stack (T3)

T3

44

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

T3

T2

Example 2

Operand

Stack

Operation

See operator ‘+’

1. Pop two elements from stack

2. Perform evaluation

(T4=T2+T3)

3. Push result into stack (T4)

T4

Try the rest of steps yourself!

45

 Infix: 𝑋 = 𝐴/𝐵 − 𝐶 + 𝐷 ∗ 𝐸 − 𝐴 ∗ 𝐶

 Postfix: 𝑋 = 𝐴𝐵/𝐶 − 𝐷𝐸 ∗ +𝐴𝐶 ∗ −

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 8

Evaluation Pseudo Code

void Eval(Expression e)

{ // Assume the last token of e is ‘#’

// A function NextToken is used to get next token in e

Stack<Token> stack; // initialize stack

for (Token x = NextToken(e); x != ‘#’; x = NextToken(e)){

if(x is an operand) stack.Push(x);

else{

// Remove the correct number of operands from stack

// Perform the evaluation

// Push the result back to stack

// ***Try to fill up the code ***

}

}

};

46

Infix to Postfix

 Fully parenthesize algorithm:

◦ Fully parenthesize the expression

◦ Move all operators so the they replace the

corresponding right parentheses

◦ Delete all parentheses

((((A / B) – C) + (D * E)) - (A * C))

A B / C – D E * + A C * -
47

Smarter Infix to Postfix Algorithm

 Utilize stack

 Scan the expression only once

 The order of operands does not change
between infix and postfix

◦ Output every visiting operand directly

Use stack to store visited operators and
pop them out at the proper sequence

◦ When the priority of the operator on top of
stack is higher or equal to that of the
incoming operator (left-to-right associativity)

48

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 9

Example 1

 Infix: A + B * C

Next

token
Stack Output

None Empty None

A Empty A

+ + A

B + AB

* +* AB

C +* ABC

+ ABC*

Empty ABC*+

49

Example 2

 Infix: A * (B + C) * D
Next

token
Stack Output

None Empty None

A Empty A

* * A

(*(A

B *(AB

+ *(+ AB

C *(+ ABC

) * ABC+

* * ABC+*

D * ABC+*D

Empty ABC+*D* 50

Notes: Expression with ()

 ‘(‘ has the highest priority, always push to

stack.

 Once pushed, ‘(’ get the lowest priority.

 ‘)’ has the lowest priority, therefore pop

the operators in the stack until you see

the matched ‘(’, then eliminate both.

51

Prof. Ren-Song Tsay September 12, 2018

Chapter 1 — Computer Abstractions and Technology 10

Postfix Pseudo Code

void Postfix(Expression e)

{ // Assume the last token of e is ‘#’

// A function NextToken is used to get next token in e

Stack<Token> stack; // initialize stack

for (Token x = NextToken(e); x != ‘#’; x = NextToken(e)){

if(x is an operand) cout << x;

else if (x == ‘)’){ // pop until ‘(’

for(; stack.Top()!=‘(’; stack.Pop()) cout<<stack.Top();

stack.Top(); // pop ‘(‘

}

else{ // x is an operator

for(;icp(stack.Top()) <= icp(x);stack.Pop())

cout<<stack.Top();

stack.Push(x);

}
}

// end of expression; empty the stack

for(;!stack.IsEmpty(); cout << stack.Top(), stack.Pop());

};

52

