Prof. Ren-Song Tsay September 12, 2018

A/B—C+D*E—A*C=?
3.6 |

36.1 Regular Expression ‘

X=A/B-C+D+E-AxC

* Operators

o+, %/, ete
* Operands
> AB,C,DEF

Expression Evaluation

eForX=A/B—C+D+E—-A%*C
* IfA =4,B=C=2,D=E=3

«ForX = ((4/B) = C) + (D +E) — (A =
0)

o X = ((412)-2)+(3%3)-(4*2)=

«ForX =(A/(B—C+D))*(E—A)*C
o X = (4/(2-2+3))5(3-4)%2 = -2.6666666

Chapter 1 — Computer Abstractions and Technology 1

Prof. Ren-Song Tsay September 12, 2018

Evaluation Rules

¢ Operators have priority

e Operator with higher priority is
evaluated first

e Operators of equal priority are
evaluated from left to right

e Unary operators are evaluated from
right to left

Priority of Operators in CPP ‘

Priority Operators

| Minus, !

2 *1,%

3 + -

4 <, <=, >= >
5 ==, 1=

6 &&

7 |

3.62 Infix and Postfix Notation

» Infix notation (FFF)
> Operator comes in—between the operands
o Ex. A+B*C
° Hard to evaluate using code...

» Postfix notation (&7)

> Each operator appears after its operands
> Ex.ABC*+

Chapter 1 — Computer Abstractions and Technology 2

Prof. Ren-Song Tsay September 12, 2018

Advantages of Postfix Notation

¢ You don’t need parentheses

e Priority of operators is no longer relevant!

« Expression can be efficiently evaluated by
> Making a left to right scan

o Stacking operands
> Evaluating operators

> Push the result into stack

Example | ‘

e Infix: A+B — C => Postfix: AB+ C —
e SupposeA=4,B=3,C=2

AB+C-

See operand A, put it
4 into stack

Operand
Stack

Example | ‘

e Infix :A+B — C => Postfix :AB + C —
e SupposeA=4,B=3,C=2

AB+C-

3 See operand B, put it
4 into stack
Operand

Stack

Chapter 1 — Computer Abstractions and Technology 3

Prof. Ren-Song Tsay September 12, 2018

Example | ‘

¢ Infix :A+B — C => Postfix :AB + C —
e SupposeA=4,B=3,C=2

AB+IC-

3 See operator ‘+’ (binary
4 operator)
Operand 1. Pop two eIemeths from stack
Stack 2. Perform evaluation (3+4)

3. Push result into stack (7)

Example | ‘

e Infix :A+B — C => Postfix :AB + C —
e SupposeA=4,B=3,C=2

AB+[Cl-

2 See operand C, put it
7 into stack
Operand
Stack
Example | ‘

e Infix :A+B — C => Postfix :AB + C —
e SupposeA=4,B=3,C=2

2 See operator ‘-’
p
3 (binary operator)
operand |- Pop two elements from stack
Stack 2. Perform evaluation (7-2)

3. Push result into stack (5)

Chapter 1 — Computer Abstractions and Technology 4

Prof. Ren-Song Tsay September 12, 2018

Example 2

elInfixx X=A/B—C+D*E—-Ax*C
o Postfix: X =/AB/C — DE * +AC * —

See operand A, put it
into stack

A

Operand
Stack

Example 2

elnfixx X=A/B—C+D+E—-A%*C
* Postfix: X = AB/C — DE % +AC * —

See operand B, put it
B into stack

A

Operand
Stack

Example 2

elnfixx X=A/B—C+D*E—A*C
o Postfix: X = AB/C — DE * +AC » —

See operator

B |. Pop two elements from stack
'p& 2. Perform evaluation (T,=A/B)
Operand 3. Push result into stack (T))

Stack

Chapter 1 — Computer Abstractions and Technology 5

Prof. Ren-Song Tsay September 12, 2018

Example 2

elInfixx X=A/B—C+D*E—-Ax*C
* Postfix: X = AB/C|— DE * +AC * —

See operand C, put it
C into stack
T,

Operand
Stack

Example 2

elnfixx X=A/B—C+D+E—-A%*C
o Postfix: X = AB/C/—|DE * +AC * —

See operator ‘-’

C |. Pop two elements from stack
T, 2. Perform evaluation (T,=T,-C)
Operand 3. Push result into stack (T,)
Stack
Example 2

elnfixx X=A/B—C+D*E—A*C
e Postfix: X = AB/C — DE * +AC * —

See operand D, put it
D into stack
T,
Operand
Stack

Chapter 1 — Computer Abstractions and Technology 6

Prof. Ren-Song Tsay September 12, 2018

Example 2

elInfixx X=A/B—C+D*E—-Ax*C
o Postfix: X = AB/C — DE* +AC * —

E See operand E, put it
D into stack
T,
Operand
Stack

Example 2

elnfixx X=A/B—C+D+E—-A%*C
o Postfix: X = AB/C — DE/* +AC * —

E See operator ¥
|. Pop two elements from stack
T, 2. Perform evaluation (T,=D*E)
Operand 3. Push result into stack (T5)
Stack
Example 2

elnfixx X=A/B—C+D*E—A*C
o Postfix: X = AB/C — DE *[+AC * —

See operator ‘+’

T3 |. Pop two elements from stack
Tz 2. Perform evaluation
Operand (T4=T*T3)
Stack 3. Push result into stack (T,)

lTry the rest of steps yourself! ‘

Chapter 1 — Computer Abstractions and Technology 7

Prof. Ren-Song Tsay September 12, 2018

Evaluation Pseudo Code

void Eval (Expression e)
{ // Assume the last token of e is ‘#’

// A function NextToken is used to get next token in e
Stack<Token> stack; // initialize stack
for (Token x = NextToken(e); x != ‘#'; x = NextToken(e)) {

if(x is an operand) stack.Push(x);
else{

// Remove the correct number of operands from stack
// Perform the evaluation

// Push the result back to stack
// ***Try to fill up the code ***

}
}

};

Infix to Postfix

¢ Fully parenthesize algorithm:
° Fully parenthesize the expression

> Move all operators so the they replace the
corresponding right parentheses
> Delete all parentheses

((A/B)-C)+(D*E))-(A"C))

T

AB/ C- D E*+ A C*-

Smarter Infix to Postfix Algorithm

e Utilize stack
¢ Scan the expression only once

* The order of operands does not change
between infix and postfix
> Output every visiting operand directly
<+Use stack to store visited operators and
pop them out at the proper sequence

> When the priority of the operator on top of
stack is higher or equal to that of the
incoming operator (left-to-right associativity)

Chapter 1 — Computer Abstractions and Technology

Prof. Ren-Song Tsay September 12, 2018

Example | ‘

o Infix: A+B*C

None Empty None
A Empty A
+ + A
B a AB
@ +* AB
C T ABC
+ ABC*
Empty ABC*+
Example 2 ‘

< Infix: A* (B+C)*D

None Empty None
A Empty A
* * A
(*(A
B * AB
+ *(+ AB
© *(+ ABC
) * ABC+
* * ABC+*
D * ABC+*D

Empty ABC+*D*

Notes: Expression with ()

¢ ‘(“ has the highest priority, always push to
stack.

* Once pushed,‘(’ get the lowest priority.

¢ ‘) has the lowest priority, therefore pop
the operators in the stack until you see
the matched ‘(’, then eliminate both.

Chapter 1 — Computer Abstractions and Technology 9

Prof. Ren-Song Tsay

Postfix Pseudo Code

September 12, 2018

{

void Postfix (Expression e)

// Assume the last token of e is ‘#’
// A function NextToken is used to get next token in e
Stack<Token> stack; // initialize stack

for (Token x = NextToken(e); x != ‘#'; x = NextToken(e)) {
if(x is an operand) cout << x;
else if (x == ‘)’){ // pop until ‘('

for(; stack.Top()!='(’; stack.Pop()) cout<<stack.Top();
stack.Top(); // pop ('
}
else{ // x is an operator
for (;icp(stack.Top()) <= icp(x);stack.Pop())
cout<<stack.Top() ;
stack.Push (x) ;
}
}
// end of expression; empty the stack
for (;!stack.IsEmpty(); cout << stack.Top(), stack.Pop());

Chapter 1 — Computer Abstractions and Technology

10

